Minggu, 31 Januari 2010

Usaha dan Energi

USAHA

Usaha alias Kerja yang dilambangkan dengan huruf W (Work bahasa inggris), digambarkan sebagai sesuatu yang dihasilkan oleh Gaya (F) ketika Gaya bekerja pada benda hingga benda bergerak dalam jarak tertentu. Hal yang paling sederhana adalah apabila Gaya (F) bernilai konstan (baik besar maupun arahnya) dan benda yang dikenai Gaya bergerak pada lintasan lurus dan searah dengan arah Gaya tersebut.

Secara matematis, usaha yang dilakukan oleh gaya yang konstan didefinisikan sebagai hasil kali perpindahan dengan gaya yang sejajar dengan perpindahan.

Text Box: W  = usaha F   = gaya yang sejajar       dengan perpindahan s    = perpindahan.Persamaan matematisnya adalah :

Oval: W = F s

Maka usaha yang dilakukan oleh gaya pada benda didefinisikan sebagai perkalian antara perpindahan dengan komponen gaya yang searah dengan perpindahan. Komponen gaya yang searah dengan perpindahan adalah F cos è.

Secara matematis dirumuskan sebagai berikut :

Oval: W = (F cos è) . s = F.s cos è


Usaha hanya memiliki besar dan tidak mempunyai arah, karenanya termasuk besaran skalar. Walaupun gaya dan perpindahan termasuk besaran vektor tetapi usaha merupakan besaran skalar karena diperoleh dari perkalian skalar. Satuan Usaha dalam Sistem Internasional (SI) adalah newton]meter.

Satuan newton]meter juga biasa disebut Joule ( 1 Joule = 1 N.m). menggunakan sistem CGS (Centimeter Gram Sekon), satuan usaha disebut erg. 1 erg = 1 dyne.cm. Dalam sistem British, usaha diukur dalam

foot]pound (kaki]pon). 1 Joule = 107 erg = 0,7376 ft.lb.

Perlu anda pahami dengan baik bahwa sebuah gaya melakukan usaha apabila benda yang dikenai gaya mengalami perpindahan. Jika benda tidak berpindah tempat maka gaya tidak melakukan usaha. Agar memudahkan pemahaman anda, perhatikan contoh berikut :

Horizontal Scroll:     Bayangkanlah anda sedang menenteng buku sambil diam di tempat. Walaupun anda memberikan gaya pada buku tersebut, sebenarnya anda tidak melakukan usaha karena buku tidak melakukan perpindahan. Ketika anda menenteng atau menjinjing buku sambil berjalan lurus ke depan, ke belakang atau ke samping, anda juga tidak melakukan usaha pada buku. Pada saat menenteng buku atau menjinjing tas, arah gaya yang diberikan ke atas, tegak lurus dengan arah perpindahan

Flowchart: Multidocument: Kita dapat menyimpulkan bahwa sebuah gaya tidak melakukan usaha apabila gaya tidak menghasilkan perpindahan dan arah gaya tegak lurus dengan arah perpindahan.


Contoh Soal 1 :

Sebuah peti kemas bermassa 50 kg yang terletak pada lantai ditarik horisontal sejauh 2 meter dengan gaya 100 N oleh seorang buruh pelabuhan. Lantai tersebut agak kasar sehingga gaya gesekan yang diberikan pada karung beras sebesar 50 N. Hitunglah usaha total yang dilakukan terhadap peti kemas tersebut.

Dik :

m = 50 kg fk = 50 N

s = 2 m F = 100 N

Dit :

1. Wb (Usaha yang dilakukan oleh buruh pelabuhan) ?

2. Wg (Usaha yang dilakukan oleh Gaya gesekan) ?

3. Ww (Usaha yang dilakukan oleh gaya berat) ?

Jawab :

1. Wb = Fb.s

= (100 N) (2 m)

= 200 N.m

2. Wg = Fg.s

= (]50 N) (2 m)

= 100 N.m

3. Ww = Fw.s

= (mg) (2 m) cos 90o

= 0

Usaha total =

= Wb + Wg + Ww + WN = (200 N.m) + (]100 N.m) + 0 + 0 =

100 N.m = 100 Joule


ENERGI

Segala sesuatu yang kita lakukan dalam kehidupan sehari-hari membutuhkan energi. Untuk bertahan hidup kita membutuhkan energi yang diperoleh dari makanan. Setiap kendaraan membutuhkan energi untuk bergerak dan energi itu diperoleh dari bahan bakar. Hewan juga membutuhkan energi untuk hidup, sebagaimana manusia dan tumbuhan.

Energi merupakan salah satu konsep yang paling penting dalam fisika. Konsep yang sangat erat kaitannya dengan usaha adalah konsep energi. Secara sederhana, energi merupakan kemampuan melakukan usaha. Definisi yang sederhana ini sebenarnya kurang tepat atau kurang valid untuk beberapa jenis energi (misalnya energi panas atau energi cahaya tidak dapat melakukan kerja).

Definisi tersebut hanya bersifat umum. Secara umum, tanpa energi kita tidak dapat melakukan kerja. Sebagai contoh, jika kita mendorong sepeda motor yang mogok, usaha alias kerja yang kita lakukan

menggerakan sepeda motor tersebut. Pada saat yang sama, energi kimia dalam tubuh kita menjadi berkurang, karena sebagian energi kimia dalam tubuh berubah menjadi energi kinetik sepeda motor.

Usaha dilakukan ketika energi dipindahkan dari satu benda ke benda lain. Contoh ini juga menjelaskan salah satu konsep penting dalam sains, yakni kekekalan energi. Jumlah total energi pada sistem dan lingkungan bersifat kekal alias tetap. Energi tidak pernah hilang, tetapi hanya dapat berubah bentuk dari satu bentuk energi menjadi bentuk energi lain.

Jenis-Jenis Energi

1. ENERGI POTENSIAL

Oval: Jika seseorang membawa suatu batu ke atas bukit dan meletakkannya di sana, batu tersebut akan mendapat energi potensial gravitasiEnergi potensial adalah energi yang ditimbulkan oleh posisi relatif atau konfigurasi objek pada suatu sistem fisik. Bentuk energi ini memiliki potensi untuk mengubah keadaan objek-objek lain di sekitarnya, contohnya, konfigurasi atau gerakannya. Contoh sederhana :

Berbagai jenis energi dapat dikelompokkan sebagai energi potensial. Setiap bentuk energi ini dihubungkan dengan suatu jenis gaya tertentu yang bekerja terhadap sifat fisik tertentu materi (seperti massa, muatan, elastisitas, suhu, dll). Energi potensial gravitasi dihubungkan dengan gaya gravitasi yang bekerja terhadap massa benda; energi potensial elastik terhadap gaya elastik (gaya elektromagnetik) yang bekerja terhadap elastisitas objek yang berubah bentuk; energi potensial elektrikal dengan gaya coulomb; gaya nuklir kuat atau lemah yang bekerja terhadap muatan elektrik pada objek; energi potensial kimia, dengan potensial kimia pada suatu konfigurasi atomik atau molekular tertentu yang bekerja terhadap struktur atomik atau molekular zat kimia yang membentuk objek; energi potensial termal dengan gaya elektromagnetik yang berhubungan dengan suhu objek.


*Gravitasi Bumi salah satu gaya yang menimbulkan Gaya Potensial

1.1. Energi Potensial Gravitasi

Contoh yang paling umum dari energi potensial adalah energi potensial gravitasi. Buah mangga yang lezat dan ranum memiliki energi potensial gravitasi ketika sedang menggelayut pada tangkainya. Demikian juga ketika anda berada pada ketinggian tertentu dari permukaan tanah. Energi potensial gravitasi dimiliki benda karena posisi relatifnya terhadap bumi. Setiap benda yang memiliki energi potensial gravitasi dapat melakukan kerja apabila benda tersebut bergerak menuju permukaan bumi (misalnya buah mangga jatuh dari pohon). Untuk memudahkan pemahamanmu, lakukan percobaan sederhana berikut ini. Pancangkan sebuah paku di tanah. Angkatlah sebuah batu yang ukurannya agak besar dan jatuhkan batu tegak lurus pada paku tersebut. Amati bahwa paku tersebut terpancang semakin dalam akibat usaha alias kerja yang dilakukan oleh batu yang anda jatuhkan.

Sekarang mari kita tentukan besar energi potensial gravitasi sebuah benda di dekat permukaan bumi. Misalnya kita mengangkat sebuah batu bermassa m. gaya angkat yang kita berikan pada batu paling tidak sama dengan gaya berat yang bekerja pada batu tersebut, yakni mg (massa kali percepatan gravitasi). Untuk mengangkat batu dari permukaan tanah hingga mencapai ketinggian h, maka kita harus melakukan usaha yang besarnya sama dengan hasil kali gaya berat batu (W = mg) dengan ketinggian h. Ingat ya, arah gaya angkat kita sejajar dengan arah perpindahan batu, yakni ke atas…

Flowchart: Process: FA = gaya angkat W = FA . s = (m)(-g) (s) = - mg(h2-h1)


1.2. Energi Potensial Pegas

Pada Gerak Harmonik Sederhana, gaya yang bekerja pada benda dan pegas tidak tetap alias selalu berubah-ubah. Oleh karenanya, lebih mudah jika kita menggunakan pendekatan energi. Untuk menekan atau meregangkan pegas, kita memberikan energi pada pegas tersebut. Energi yang disimpan pada pegas yang tertekan atau teregang merupakan energi potensial. Ketika pegas yang kita tekan atau kita regangkan dilepaskan, maka energi potensial pegas berubah menjadi energi kinetik. Demikian juga pada ayunan sederhana. Ketika benda yang digantungkan pada seutas tali kita simpangkan sampai jarak tertentu dari posisi setimbangnya, pada benda tersebut terdapat Energi Potensial. Jika ayunan dilepaskan sehingga benda bergerak, Energi Potensial akan berubah menjadi energi kinetik. Jadi benda yang bergerak harmonik memiliki energi potensial dan energi kinetik.

EP + EK = EM

Jumlah total energi potensial dan energi kinetik adalah energi mekanik.

Sekarang mari kita tinjau energi pada pegas dan ayunan sederhana. Energi Potensial pada Pegas Untuk menghitung energi potensial pada pegas, terlebih dahulu kita hitung kerja alias usaha yang dibutuhkan untuk meregangkan pegas. Persamaan Usaha adalah W = F s, di mana F adalah gaya dan s adalah perpindahan. Pada pegas, perpindahan adalah simpangan x. Ketika kita menekan atau meregangkan pegas sejauh x, dibutuhkan gaya Fa yang berbanding lurus dengan x. Secara matematis ditulis Fa = kx. Ketika ditekan atau diregangkan, pegas memberikan gaya dengan arah berlawanan (Fb) yang besarnya adalah Fb = -kx.

Gaya rata-rata = F = ½ (0 + kx) = ½ kx. x adalah jarak maksimum pegas yang diregangkan atau ditekan.

Untuk menghitung energi potensial dari pegas yang tertekan atau teregang, terlebih dahulu kita hitung usaha atau kerja yang dibutuhkan untuk merentangkannya. Kita tidak bisa menggunakan persamaan usaha W = Fx, karena gaya Fa baik ketika pegas diregangkan maupun ditekan selalu berubah-ubah sepanjang x. (amati gambar di atas). Oleh karena itu kita menggunakan gaya rata-rata. Gaya Fa berubah dari 0 ketika x=0 sampai bernilai kx ketika pegas diregangkan atau ditekan sejauh x.

W = Fa x = (1/2 kx) (x) = ½ kx2

EP elastis = ½ kx2 Energi Kinetik

Besar energi kinetik adalah : EK = ½ mv2


Pada Pegas Perlu anda ketahui bahwa Energi Potensial tidak mempunyai suatu persamaan umum yang mewakili semua jenis gerakan. Untuk EP elastis telah kita turunkan pada pembahasan di atas. Berbeda dengan EP, persamaan EK bersifat umum untuk semua jenis gerakan. Energi Kinetik dimiliki benda ketika bergerak. m adalah massa benda dan v adalah kecepatan gerak benda. Jumlah total Energi Kinetik dan Energi Potensial dari pegas adalah Energi Mekanik. Energi tersebut bernilai tetap alias kekal. Secara matematis ditulis : EM = EP + EK Sekarang, mari kita tinjau lebih mendalam hukum kekekalan energi mekanik pada pegas. Getaran pegas terdiri dari dua jenis, yakni getaran pegas yang diletakan secara horisontal dan getaran pegas yang digantungkan secara vertikal. HUKUM KEKEKALAN ENERGI MEKANIK PADA PEGAS Pegas yang diletakan horisontal Misalnya kita letakan sebuah pegas di atas permukaan meja. Salah satu ujung pegas telah diikat pada dinding, sehingga pegas tidak bergeser ketika digerakan. Anggap saja permukaan meja sangat licin dan pegas yang kita gunakan adalah pegas ideal sehingga memenuhi hukum Hooke. Sekarang kita kaitkan sebuah benda pada salah satu ujung pegas.

Jika benda kita tarik ke kanan sehingga pegas teregang sejauh x, maka pada benda bekerja gaya pemulih pegas, yang arahnya berlawanan dengan arah tarikan kita. Ketika benda berada pada simpangan x, EP benda maksimum sedangkan EK benda nol (benda masih diam).

Ketika benda kita lepaskan, gaya pemulih pegas menggerakan benda ke kiri, kembali ke posisi setimbangnya. EP benda menjadi berkurang dan menjadi nol ketika benda berada pada posisi setimbangnya. Selama bergerak menuju posisi setimbang, EP berubah menjadi EK. Ketika benda tepat berada pada posisi setimbang (x = 0), gaya pemulih pegas bernilai nol tetapi pada titik ini kecepatan benda maksimum. Karena kecepatannya maksimum, maka ketika berada pada posisi setimbang, EK bernilai maksimum.

Benda masih terus bergerak ke kiri karena ketika berada pada posisi setimbang karena benda memiliki kecepatan yang bernilai maksimum. Ketika bergerak ke kiri, Gaya pemulih pegas menarik benda kembali ke posisi setimbang, sehingga benda berhenti sesaat pada simpangan sejauh -x dan bergerak kembali menuju posisi setimbang. Ketika benda berada pada simpangan sejauh -x, EK benda = 0 karena kecepatan benda = 0. pada posisi ini EP bernilai maksimum.

Pada penjelasan di atas, tampak bahwa ketika bergerak dari posisi setimbang menuju ke kiri sejauh x = -A (A = amplitudo/simpangan terjauh), kecepatan benda menjadi berkurang dan bernilai nol ketika benda tepat berada pada x = -A. Karena kecepatan benda berkurang, maka EK benda juga berkurang dan bernilai nol ketika benda berada pada x = -A. Akibat adanya gaya pemulih pegas yang menarik benda kembali ke kanan (menuju posisi setimbang), benda memperoleh kecepatan dan Energi Kinetiknya lagi. EK benda bernilai maksimum ketika benda tepat berada pada x = 0, karena laju gerak benda pada posisi tersebut bernilai maksimum. Proses perubahan energi antara EK dan EP berlangsung terus menerus selama benda bergerak bolak balik. Total EP dan EK selama benda bergetar besarnya tetap alias kekal bin konstan.

Pegas yang diletakan vertikal Pada dasarnya osilasi alias getaran dari pegas yang digantungkan secara vertikal sama dengan getaran pegas yang diletakan horisontal. Bedanya, pegas yang digantungkan secara vertikal lebih panjang karena pengaruh gravitasi yang bekerja pada benda (gravitasi hanya bekerja pada arah vertikal, tidak pada arah horisontal). Mari kita tinjau lebih jauh Kekekalan Energi Mekanik pada pegas yang digantungkan secara vertikal…

Pada pegas yang kita letakan horisontal (mendatar), posisi benda disesuaikan dengan panjang pegas alami. Pegas akan meregang atau mengerut jika diberikan gaya luar (ditarik atau ditekan). Nah, pada pegas yang digantungkan vertikal, gravitasi bekerja pada benda bermassa yang dikaitkan pada ujung pegas. Akibatnya, walaupun tidak ditarik ke bawah, pegas dengan sendirinya meregang sejauh x0. Pada keadaan ini benda yang digantungkan pada pegas berada pada posisi setimbang. Berdasarkan hukum II Newton, benda berada dalam keadaan setimbang jika gaya total = 0. Gaya yang bekerja pada benda yang digantung adalah gaya pegas (F0 = -kx0) yang arahnya ke atas dan gaya berat (w = mg) yang arahnya ke bawah. Total kedua gaya ini sama dengan nol. Mari kita analisis secara matematis…

Gurumuda tetap menggunakan lambang x agar anda bisa membandingkan dengan pegas yang diletakan horisontal. Dirimu dapat menggantikan x dengan y. Resultan gaya yang bekerja pada titik kesetimbangan = 0. Hal ini berarti benda diam alias tidak bergerak. Jika kita meregangkan pegas (menarik pegas ke bawah) sejauh x, maka pada keadaan ini bekerja gaya pegas yang nilainya lebih besar dari pada gaya berat, sehingga benda tidak lagi berada pada keadaan setimbang (perhatikan gambar c di bawah).

Total kedua gaya ini tidak sama dengan nol karena terdapat pertambahan jarak sejauh x; sehingga gaya pegas bernilai lebih besar dari gaya berat. Ketika benda kita diamkan sesaat (belum dilepaskan), EP benda bernilai maksimum sedangkan EK = 0. EP maksimum karena benda berada pada simpangan sejauh x. EK = 0 karena benda masih diam.

Karena terdapat gaya pegas (gaya pemulih) yang berarah ke atas maka benda akan bergerak ke atas menuju titik setimbang. (sambil lihat gambar c di bawah ya).

Ketika mencapai titik setimbang, besar gaya total = 0, tetapi laju gerak benda bernilai maksimum (v maks). Pada posisi ini, EK bernilai maksimum, sedangkan EP = 0. EK maksimum karena v maks, sedangkan EP = 0, karena benda berada pada titik setimbang (x = 0). Karena pada posisi setimbang kecepatan gerak benda maksimum, maka benda bergerak terus ke atas sejauh -x. Laju gerak benda perlahan-lahan menurun akibat adanya gaya berat yang menarik benda ke bawah, sedangkan besar gaya pemulih meningkat dan mencapai nilai maksimum pada jarak -x. Ketika benda berada pada simpangan sejauh -x, EP bernilai maksimum sedangkan EK = 0. Setelah mencapai jarak -x, gaya pemulih pegas menggerakan benda kembali lagi ke posisi setimbang (lihat gambar di bawah). Demikian seterusnya. Benda akan bergerak ke bawah dan ke atas secara periodik. Selama benda bergerak, selalu terjadi perubahan energi antara EP dan EK. Energi Mekanik bernilai tetap. Ketika benda berada pada titik kesetimbangan (x = 0), EM = EK. Ketika benda berada pada simpangan sejauh -x atau +x, EM = EP.

Energi Potensial sebuah pegas dengan konstanta gaya k yang teregang sejauh x dari kesetimbangannya dinyatakan dengan persamaan : EP = ½ kx2 Energi Kinetik sebuah benda bermassa m yang bergerak dengan kelajuan v ialah : EK = ½ mv2 Energi Total (Energi Mekanik) adalah jumlah Energi Potensial dan Energi Kinetik : EM = EP + EK = ½ kx2 + ½ mv2 Ketika benda berada pada simpangan maksimum, x = A (A = Amplitudo), kecepatan benda = 0, sehingga Energi Mekanik benda : EM = ½ kA2 Persamaan ini memberikan sifat umum penting yang dimiliki Gerak Harmonik Sederhana (GHS) : Energi total pada Gerak Harmonik Sederhana berbanding lurus dengan kuadrat amplitudo. Referensi : Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit ErlanggaClose This

www.scribd.com

Contoh soal :

Buah mangga yang ranum dan mengundang selera menggelayut pada tangkai pohon mangga yang

berjarak 10 meter dari permukaan tanah. Jika massa buah mangga tersebut 0,2 kg, berapakah energi

potensialnya ? anggap saja percepatan gravitasi 10 m/s2.

Panduan jawaban :

EP = m.g.h

EP = (0,2 kg) (10 m/s2) (10 m)

EP = 20 Kg m2/s2 = 20 N.m = 20 Joule

2. ENERGI KINETIK

Energi kinetis atau energi gerak (juga disebut energi kinetik) adalah energi yang dimiliki oleh sebuah benda karena gerakannya.
Energi kinetis sebuah benda sama dengan jumlah usaha yang diperlukan untuk menyatakan kecepatan dan rotasinya, dimulai dari rehat.
Setiap benda yang bergerak mempunyai energi. Energi yang dimiliki oleh benda yang bergerak disebut Energi Kinetik. Atau secara bahasa mudahnya : energi kinetik itu energi yang sedang dilakukan pada benda yang bergerak.

Setiap benda yang bergerak memiliki energi. Ketapel yang ditarik lalu dilepaskan sehingga batu yang berada di dalam ketapel meluncur dengan kecepatan tertentu. Batu yang bergerak tersebut memiliki energi. Jika diarahkan pada ayam tetangga maka kemungkinan besar ayam tersebut lemas tak berdaya akibat dihajar batu. Pada contoh ini batu melakukan kerja pada ayam ;)Kendaraan beroda yang bergerak dengan laju tertentu di jalan raya juga memiliki energi kinetik. Ketika dua buah kendaraan yang sedang bergerak saling bertabrakan, maka bisa dipastikan kendaraan akan digiring ke bengkel untuk diperbaiki. Kerusakan akibat tabrakan terjadi karena kedua mobil yang pada mulanya bergerak melakukan usaha / kerja satu terhadap lainnya. Ketika tukang bangunan memukul paku menggunakan martil, martil yang digerakan tukang bangunan melakukan kerja pada paku.

Setiap benda yang bergerak memberikan gaya pada benda lain dan memindahkannya sejauh jarak tertentu. Benda yang bergerak memiliki kemampuan untuk melakukan kerja, karenanya dapat dikatakan memiliki energi. Energi pada benda yang bergerak disebut energi kinetik. Kata kinetik berasal dari bahasa yunani, kinetikos, yang artinya “gerak”. ketika benda bergerak, benda pasti memiliki kecepatan. Dengan demikian, kita dapat menyimpulkan bahwa energi kinetik merupakan energi yang dimiliki benda karena gerakannya atau kecepatannya.

Sekarang mari kita turunkan persamaan Energi Kinetik.

Untuk menurunkan persamaan energi kinetik, bayangkanlah sebuah benda bermassa m sedang bergerak pada lintasan lurus dengan laju awal vo.

Agar benda dipercepat beraturan sampai bergerak dengan laju v maka pada benda tersebut harus diberikan gaya total yang konstan dan searah dengan arah gerak benda sejauh s. Untuk itu dilakukan usaha alias kerja pada benda tersebut sebesar W = F s. Besar gaya F = m a.

vt2 = vo2 + 2as

Karena benda memiliki laju awal vo, laju akhir vt dan bergerak sejauh s, maka untuk menghitung nilai percepatan a, kita menggunakan persamaan

Kita subtitusikan nilai percepatan a ke dalam persamaan gaya F = m a, untuk menentukan besar usaha :

Persamaan ini menjelaskan usaha total yang dikerjakan pada benda. Karena W = EK maka kita dapat menyimpulkan bahwa besar energi kinetik translasi pada benda tersebut adalah :

W = EK = ½ mv2

www.basicphysics.blogspot.com

3.ENERGI MEKANIK

Energi mekanik adalah penjumlahan antara energi kinetik dengan energi potensial suatu benda.

dengan :

m= massa benda (kg)

g=percepatan gravitasi (m/s2)

h=ketinggian

v=kecepatan (m/s)

EM=Ep+Ek

EM=m.g.h+ {(1/2)mv^2}





Atau secara matematisnya

Hukum Kekekalan Energi Mekanik

Oya, perlu anda ketahui bahwa pada contoh perubahan energi, misalnya energi listrik berubah menjadi energi panas atau energi nuklir menjadi energi panas, perubahan bentuk energi tersebut terjadi akibat adanya perubahan antara energi potensial dan energi kinetik pada skala mikroskopis. Perubahan energi ini terjadi pada level atom…

Pada Skala makroskopis, kita juga dapat menjumpai perubahan energi antara Energi Kinetik dan Energi Potensial, misalnya batu yang dijatuhkan dari ketinggian tertentu, anak panah dan busur, batu dan ketapel, pegas dan beban yang diikatkan pada pegas, bandul sederhana, dll.

Jumlah total Energi Kinetik dan Energi Potensial disebut Energi Mekanik. Ketika terjadi perubahan energi dari EP menjadi EK atau EK menjadi EP, walaupun salah satunya berkurang, bentuk energi lainnya bertambah. Misalnya ketika EP berkurang, besar EK bertambah. Demikian juga ketika EK berkurang, pada saat yang sama besar EP bertambah. Total energinya tetap sama, yakni Energi Mekanik. Jadi Energi Mekanik selalu tetap alias kekal selama terjadi perubahan energi antara EP dan EK. Karenanya kita menyebutnya Hukum Kekekalan Energi Mekanik.

Sebelum kita tinjau HKE secara kuantitaif (penurunan persamaan matematis alias rumus Hukum Kekekalan Energi), terlebih dahulu kita berkenalan dengan gaya-gaya konservatif dan gaya tak konservatif. Walaupun ini adalah pelajaran tingkat lanjut, tetapi sebenarnya menjadi dasar yang perlu diketahui agar dirimu bisa lebih memahami apa dan bagaimana Hukum Kekekalan Energi Mekanik dengan baik…


Gaya-gaya konservatif dan Gaya-gaya Tak Konservatif

Mari kita berkenalan dengan gaya konservatif dan gaya tak-konservatif. Setelah mempelajari pembahasan ini, mudah-mudahan dirimu dapat membedakan gaya konservatif dan gaya tak konservatif. Pemahaman akan gaya konservatif dan tak konservatif sangat diperlukan karena konsep ini sangat berkaitan dengan Hukum Kekekalan Energi Mekanik. Langsung aja ya ? tetap semangat……

Misalnya kita melemparkan sebuah benda tegak lurus ke atas. Setelah bergerak ke atas mencapai ketinggian maksimum, benda akan jatuh tegak lurus ke tanah (tangan kita). Ketika dilemparkan ke atas, benda tersebut bergerak dengan kecepatan tertentu sehingga ia memiliki energi kinetik (EK = ½ mv2). Selama bergerak di udara, terjadi perubahan energi kinetik menjadi energi potensial. Semakin ke atas, kecepatan bola makin kecil, sedangkan jarak benda dari tanah makin besar sehingga EK benda menjadi kecil dan EP-nya bertambah besar. Ketika mencapai titik tertinggi, kecepatan benda = 0, sehingga EK juga bernilai nol. EK benda seluruhnya berubah menjadi EP, karena ketika benda mencapai ketinggian maksimum, jarak vertikal benda bernilai maksimum (EP = mgh). Karena pengaruh gravitasi, benda tersebut bergerak kembali ke bawah. Sepanjang lintasan terjadi perubahan EP menjadi EK. Semakin ke bawah, EP semakin berkurang, sedangkan EK semakin bertambah. EP berkurang karena ketika jatuh, ketinggian alias jarak vertikal makin kecil. EK bertambah karena ketika bergerak ke bawah, kecepatan benda makin besar akibat adanya percepatan gravitasi yang bernilai tetap. Kecepatan benda bertambah secara teratur akibat adanya percepatan gravitasi. Benda kehilangan EK selama bergerak ke atas, tetapi EK diperoleh kembali ketika bergerak ke bawah. Energi kinetik diartikan sebagai kemampuan melakukan usaha. Karena Energi kinetik benda tetap maka kita dapat mengatakan bahwa kemampuan benda untuk melakukan usaha juga bernilai tetap. Gaya gravitasi yang mempengaruhi gerakan benda, baik ketika benda bergerak ke atas maupun ketika benda bergerak ke bawah dikatakan bersifat konservatif karena pengaruh gaya tersebut tidak bergantung pada lintasan yang dilalui benda, tetapi hanya bergantung pada posisi awal dan akhir benda.

www.bhasicphysics.blogspot.com


Pada pokok bahasan mengenai usaha dan energi, energi potensial dan energi kinetik serta pembahasan Hukum Kekekalan Energi, kita telah mempelajari konsep usaha tanpa memperhitungkan besaran waktu.

Misalnya ketika mengangkat sebuah batu hingga ketinggian tertentu, kita membutuhkan sejumlah usaha. Batu yang kita angkat dengan sejumlah usaha tentu saja memerlukan selang waktu tertentu untuk berpindah dari kedudukan awal ke kedudukan akhir. Batu yang diangkat secara perlahan-lahan pasti memiliki waktu tempuh yang lebih lama dibandingkan dengan batu yang diangkat dengan cepat.

Pada kesempatan ini kita akan mempelajari pokok bahasan Daya, sebuah besaran fisika yang menyatakan hubungan antara usaha dan waktu......

Dalam ilmu fisika,

Text Box: Daya diartikan sebagai laju dilakukannya usaha atau perbandingan antara usaha dengan selang waktu dilakukannya usaha


.Dalam kaitan dengan energi, daya diartikan sebagai laju perubahan energi. Sedangkan Daya rata]rata didefinisikan sebagai perbandingan usaha total yang dilakukan dengan selang waktu total yang dibutuhkan untuk melakukan usaha. Semakin besar laju usaha, semakin besar Daya.

Sebaliknya, semakin kecil laju Usaha maka semakin kecil laju Daya. Yang dimaksudkan dengan laju usaha adalah seberapa cepat sebuah usaha dilakukan. Misalnya mobil A dan B memiliki massa yang sama menempuh suatu lintasan berjarak 1 km. Apabila mobil A menempuh lintasan tersebut dalam waktu yang lebih singkat dibandingkan dengan mobil B, maka ketika menempuh lintasan itu, daya mobil A lebih besar dari mobil B. Dengan kata lain, Mobil A memiliki laju perubahan energi kimia menjadi energi

mekanik yang lebih besar dari pada mobil B.

Daya merupakan besaran skalar, besaran yang hanya mempunyai nilai alias besar, tidak mempunyai arah. Satuan Daya dalam Sistem Internasional adalah Joule/detik. Joule/detik juga biasa disebut Watt (disingkat W), untuk menghargai James Watt. Dalam sistem British, satuan daya adalah 1 pon kaki/detik.

Satuan ini terlalu kecil untuk kebutuhan praktis sehingga digunakan satuan lain yang lebih besar, yakni

Dayakuda atau horse power (disingkat hp). 1 dayakuda = 550 pon]kaki/detik = 764 watt = ¾ kilowatt.


Besaran Usaha juga bisa dinyatakan dalam satuan daya x waktu, misalnya kilowatt]jam alias KWH. Satu KWH adalah usaha yang dilakukan dengan laju tetap sebesar 1 Kilo Watt selama satu jam.

Daya seekor kuda menyatakan seberapa besar usaha yang dilakukan kuda per satuan waktu. Daya sebuah mesin menyatakan seberapa besar energi kimia atau listrik dapat diubah menjadi energi mekanik per satuan waktu.


SERI EBOOK GURUMUDA

Alexander San Lohat | http://www.gurumuda.com © 2008 ] 2009

40

Referensi :

Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga

Halliday dan Resnick, 1991, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga

Tipler, P.A.,1998, Fisika untuk Sains dan Teknik–Jilid I (terjemahan), Jakarta : Penebit Erlangga

Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga

Tidak ada komentar:

Poskan Komentar